01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale ES
  3. Mathématiques
  4. Quiz bac : Les fonctions

Les fonctions Quiz bac

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 07/08/2019 - Conforme au programme 2019-2020

Si f est dérivable en a, que vaut \lim\limits_{h \to 0}\dfrac{f\left(a+h\right)-f\left(a\right)}{h} ?

Quelle est une équation de la tangente à C_f au point d'abscisse a ?

Soient u et v deux fonctions dérivables sur I. Quelle est la dérivée de f=u\times v ?

Soient u et v deux fonctions dérivables sur I avec pour tout x\in I, v\left(x\right)\neq0. Quelle est la dérivée de f=\dfrac{u}{v} ?

Soit u une fonction dérivable sur I et n\in\mathbb{N}^{\star}. Quelle est la dérivée de f=u^n ?

Soit u une fonction dérivable et strictement positive sur I. Quelle est la dérivée de f=\sqrt u ?

Sur quel intervalle la fonction x\longmapsto \sqrt x est-elle dérivable ?

Quelle est la fonction dérivée de la fonction x\longmapsto\dfrac1x sur \left]0;+\infty\right[ ?

À quelle condition sur f' la fonction f est-elle croissante ?

Soient f dérivable sur un intervalle I et a\in I. Que peut-on dire si la dérivée f' s'annule en a ?

À quelle condition graphique peut-on dire qu'une fonction est continue ?

À quoi sert le théorème des valeurs intermédiaires ?

Quel est le signe de la fonction exponentielle ?

Soient x et y deux réels. À quoi est équivalente l'égalité e^x=e^y ?

Soient x et y deux réels. Que vaut \dfrac{e^x}{e^{y}} ?

Soit u une fonction dérivable sur un intervalle I. Quelle est la dérivée de la fonction composée e^{u} ?

Quel est l'ensemble de définition de la fonction \ln ?

Soit x un réel quelconque. Que vaut \ln\left(\text{e}^x\right) ?

Quel est le signe de la fonction \ln sur \left]0;+\infty\right[ ?

Soient x et y deux réels strictement positifs. Que vaut \ln \left(\dfrac{x}{y}\right) ?

Quelle est la dérivée sur \left]0;+\infty\right[ de la fonction x\longmapsto \ln x ?

Soit u une fonction dérivable et strictement positive sur un intervalle I. Quelle est la dérivée de la fonction composée \ln\left(u\right) ?

À quelle condition dit-on qu'une fonction est convexe sur un intervalle I ?

À quelle condition dit-on qu'une fonction est concave sur un intervalle I ?

Qu'est-ce qu'un point d'inflexion sur une courbe ?

Soit f une fonction dérivable sur un intervalle I. Que peut-on dire de f' sur I si f est concave sur I ?

Soit f une fonction dérivable deux fois sur l'intervalle I.
À quelle condition la courbe représentative de f admet-elle un point d'inflexion en A (a ; f\left(a\right)) ?

Soit f une fonction définie sur un intervalle I. Si la fonction F, dérivable sur I, est une primitive de f sur I, quelle relation peut-on écrire entre ces deux fonctions ?

Soit n\in\mathbb{N}. Quelle est une des primitives, sur \mathbb{R}, de la fonction x\longmapsto x^n ?

Quelle est une des primitives, sur \left]0;+\infty\right[, de la fonction x\longmapsto \dfrac{1}{\sqrt x} ?

Quelle est une des primitives, sur \left]0;+\infty\right[, de la fonction x\longmapsto \dfrac{1}{x} ?

Soit u une fonction dérivable sur un intervalle I. Quelle est une des primitives, sur I, de la fonction u'e^{u} ?

Soit f une fonction continue sur un intervalle \left[a;b\right]. Que vaut la valeur moyenne de f sur \left[a;b\right] ?

Soient f une fonction continue sur un intervalle I, a, b et c trois réels de I. D'après la relation de Chasles que vaut \int_{a}^{c} f\left(x\right) \ \mathrm dx+\int_{c}^{b} f\left(x\right) \ \mathrm dx ?

Soient f et g deux fonctions continues sur un intervalle I et soient a et b deux réels de I tels que a\leq b.On suppose que pour tout x \in \left[a;b\right], f\left(x\right)\leq g\left(x\right). Que peut-on en déduire pour \int_{a}^{b} f\left(x\right) \ \mathrm dx et \int_{a}^{b} g\left(x\right) \ \mathrm dx ?

Soient f et g deux fonctions continues sur un intervalle I et soient a et b deux réels de I. Quelle est la relation entre \int_{a}^{b} f\left(x\right) \ \mathrm dx et F une primitive de f ?

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Fiche bac : Les fonctions

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20258  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025