01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Cinquième
  3. Mathématiques
  4. Exercice : Compléter une égalité fractionnaire

Compléter une égalité fractionnaire Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 12/05/2025 - Conforme au programme 2025-2026

Quel est le nombre manquant dans l'égalité fractionnaire suivante ?

\dfrac{3}{4}=\dfrac{\dots}{100}

Deux écritures fractionnaires sont égales uniquement si, en multipliant (ou divisant) le numérateur et le dénominateur de l'une par un même nombre non nul, on obtient l'autre écriture fractionnaire.

Ici, on passe du dénominateur de la première écriture fractionnaire, 4, à celui de la deuxième écriture fractionnaire, 100, en multipliant par 25.

En effet, 4\times 25=100.

On doit donc également multiplier par 25 le numérateur de la première écriture fractionnaire pour obtenir celui de la deuxième : \dfrac{3}{4}=\dfrac{3\textcolor{Green} {\times25}}{\underbrace{100}_{4\textcolor{Green} {\times25}}}

Or 3\times 25=75.

Le nombre manquant est 75.

Quel est le nombre manquant dans l'égalité fractionnaire suivante ?

\dfrac{2}{3}=\dfrac{\dots}{45}

Deux écritures fractionnaires sont égales uniquement si, en multipliant (ou divisant) le numérateur et le dénominateur de l'une par un même nombre non nul, on obtient l'autre écriture fractionnaire.

Ici, on passe du dénominateur de la première écriture fractionnaire, 3, à celui de la deuxième écriture fractionnaire, 45, en multipliant par 15.

En effet, 3\times 15=45.

On doit donc également multiplier par 15 le numérateur de la première écriture fractionnaire pour obtenir celui de la deuxième : \dfrac{2}{3}=\dfrac{2\textcolor{Green} {\times15}}{\underbrace{45}_{3\textcolor{Green} {\times15}}}

Or 2\times 15=30.

Le nombre manquant est 30.

Quel est le nombre manquant dans l'égalité fractionnaire suivante ?

\dfrac{3}{8}=\dfrac{\dots}{72}

Deux écritures fractionnaires sont égales uniquement si, en multipliant (ou divisant) le numérateur et le dénominateur de l'une par un même nombre non nul, on obtient l'autre écriture fractionnaire.

Ici, on passe du dénominateur de la première écriture fractionnaire, 8, à celui de la deuxième écriture fractionnaire, 7), en multipliant par 9.

En effet, 8\times 9=72.

On doit donc également multiplier par 9 le numérateur de la première écriture fractionnaire pour obtenir celui de la deuxième :
\dfrac{3}{8}=\dfrac{3\textcolor{Green} {\times9}}{\underbrace{72}_{8\textcolor{Green} {\times9}}}

Or 3\times 9=27.

Le nombre manquant est 27.

Quel est le nombre manquant dans l'égalité fractionnaire suivante ?

\dfrac{1}{4}=\dfrac{5}{\dots}

Deux écritures fractionnaires sont égales uniquement si, en multipliant (ou divisant) le numérateur et le dénominateur de l'une par un même nombre non nul, on obtient l'autre écriture fractionnaire.

Ici, on passe du numérateur de la première écriture fractionnaire, 1, à celui de la deuxième écriture fractionnaire, 5, en multipliant par 5.

En effet, 1\times 5=5.

On doit donc également multiplier par 5 le dénominateur de la première écriture fractionnaire pour obtenir celui de la deuxième :
\dfrac{1}{4}=\dfrac{\overbrace{5}^{1\textcolor{Green}{\times5}}}{4 \textcolor{Green}{\times5}}

Or 4\times 5=20.

Le nombre manquant est 20.

Quel est le nombre manquant dans l'égalité fractionnaire suivante ?

\dfrac{6}{3}=\dfrac{24}{\dots}

Deux écritures fractionnaires sont égales uniquement si,  en multipliant (ou divisant) le numérateur et le dénominateur de l'une par un même nombre non nul, on obtient l'autre écriture fractionnaire.

Ici, on passe du numérateur de la première écriture fractionnaire, 6, à celui de la deuxième écriture fractionnaire, 24, en multipliant par 4.

En effet, 6\times 4=24.

On doit donc également multiplier par 4 le dénominateur de la première écriture fractionnaire pour obtenir celui de la deuxième :  \dfrac{6}{3}=\dfrac{\overbrace{24}^{6\textcolor{Green}{\times4}}}{3 \textcolor{Green}{\times4}}

Or 3\times 4=12.

Le nombre manquant est 12.

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Les nombres rationnels
  • Quiz : Les nombres rationnels
  • Exercice : Connaître les caractéristiques des nombres rationnels
  • Exercice : Associer écriture décimale et écriture fractionnaire pour un nombre positif donné
  • Exercice : Simplifier une fraction
  • Exercice : Associer des fractions égales
  • Exercice : Écrire une fraction comme la somme ou la différence d'un entier donné et d'une fraction
  • Exercice : Encadrer une fraction par deux entiers consécutifs
  • Exercice : Lire une fraction sur une demi-droite graduée
  • Exercice : Placer une fraction sur un axe gradué
  • Exercice : Comparer une fraction à 1
  • Exercice : Comparer des fractions de même dénominateur
  • Exercice : Comparer des fractions de même numérateur
  • Exercice : Comparer des fractions avec des dénominateurs multiples les uns des autres
  • Exercice : Ordonner des fractions avec des dénominateurs multiples les uns des autres
  • Exercice : Associer fraction, proportion et pourcentage d'une même quantité

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20263  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025