01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale ES
  3. Mathématiques
  4. Formulaire : Les suites

Les suites Formulaire

Suites arithmétiques et géométriques

Suite arithmétique de raison r et de premier terme u_0 Suite géométrique de raison q et de premier terme u_0
Relation de récurrence u_{n+1}=u_n+r u_{n+1}=u_n\times q
Terme général

Pour tout entier n\geq p :

u_{n} = u_{p} + \left(n - p\right) r

En particulier, si \left(u_{n}\right) est définie dès le rang 0 :

u_{n} = u_{0} + nr

Pour tout entier n\geq p :

u_{n} = u_{p} \times q^{n-p}

En particulier, si \left(u_{n}\right) est définie dès le rang 0 :

u_{n} = u_{0} \times q^{n}

La limite d'une suite géométrique de terme général q^{n}

La limite de la suite géométrique de terme général q^{n} dépend de la valeur de q :

Condition sur q Limite de \left(q^n\right)
0 \lt q \lt 1 \lim\limits_{n \to +\infty } q^{n} = 0
q = 1 \lim\limits_{n \to +\infty } q^{n} = 1
q \gt 1 \lim\limits_{n \to +\infty } q^{n} = + \infty
Voir aussi
  • Cours : Les suites
  • Quiz : Les suites
  • Méthode : Etudier la monotonie d'une suite
  • Méthode : Montrer qu'une suite est arithmétique
  • Méthode : Montrer qu'une suite est géométrique
  • Méthode : Etudier une suite à l'aide d'une suite auxiliaire
  • Exercice : Représenter une suite définie de manière explicite
  • Exercice : Représenter une suite définie par récurrence
  • Exercice : Calculer la limite d'une suite géométrique

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025