01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale S
  3. Mathématiques
  4. Formulaire : Les lois de probabilités discrètes

Les lois de probabilités discrètes Formulaire

Probabilité conditionnelle

Soient A et B deux événements, avec A de probabilité non nulle.
On définit la probabilité de B sachant A par :

P_{A}\left(B\right) =\dfrac{P\left(A \cap B\right)}{P\left(A\right)}

Evénements indépendants

Deux événements A et B sont indépendants si et seulement si :

P\left(A \cap B\right) = P\left(A\right) \times P\left(B\right)

Formule des probabilités totales

Soit {E_{1}, E_{2}, E_{3},..., E_{k}} un système complet d'événements de l'univers \Omega.
D'après la formule des probabilités totales, pour tout événement A de E :

P\left(A\right) = P\left(A \cap E_{1}\right) + P\left(A \cap E_{2}\right) + P\left(A \cap E_{3}\right) +... + P\left(A \cap E_{k}\right)

Loi binomiale

Soit un réel p compris entre 0 et 1 et n un entier naturel non nul.
Le nombre de succès dans la répétition de n épreuves de Bernoulli identiques et indépendantes suit la loi binomiale de paramètres n et p.

Une variable aléatoire suit ainsi la loi binomiale de paramètres n et p, notée B\left(n ; p\right), si :

  • X\left(\Omega\right) = [\![0 ; n]\!]
  • \forall k \in [\![0 ; n]\!] \text{ , } P\left(X = k\right) =\binom{n}{k}p^{k} \left(1 - p\right)^{n-k}

Le coefficient \binom{n}{k} est égal au nombre de possibilités de placer les k succès parmi les n répétitions.

Espérance et variance d'une loi binomiale

Si X suit la loi binomiale de paramètres n et p, on a :

E\left(X\right) = np

V\left(X\right) = np\left(1 - p\right)

Voir aussi
  • Cours : Les lois de probabilités discrètes
  • Quiz : Les lois de probabilités discrètes
  • Méthode : Représenter une expérience à l'aide d'un arbre de probabilités
  • Méthode : Utiliser la formule des probabilités totales
  • Méthode : Etablir la loi d'une variable aléatoire discrète quelconque
  • Méthode : Montrer qu'une variable aléatoire suit une loi binomiale
  • Méthode : Calculer une probabilité dans le cadre de la loi binomiale
  • Exercice : Représenter une expérience à l'aide d'un arbre de probabilités
  • Exercice : Distinguer la probabilité de l'intersection de la probabilité conditionnelle
  • Exercice : Utiliser la formule des probabilités totales
  • Exercice : Calculer des probabilités dans le cas d'une situation représentée par un arbre
  • Exercice : Etablir la loi d'une variable aléatoire discrète quelconque
  • Exercice : Montrer qu'une variable aléatoire suit une loi binomiale
  • Exercice : Calculer des probabilités dans le cadre d'une loi binomiale
  • Exercice : Calculer des probabilités en introduisant une loi binomiale

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025