01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale ES
  3. Mathématiques
  4. Quiz : Les lois de probabilités discrètes

Les lois de probabilités discrètes Quiz

Que vaut P_A\left(B\right) ?

A quelle condition deux événements A et B sont-ils indépendants ?

Les événements A et \overline{A} forment une partition de l'univers. Soit E un événement quelconque. Que vaut P\left(E\right) d'après la formule des probabilités totales ?

Qu'appelle-t-on variable aléatoire réelle ?

Que signifie donner la loi de probabilité d'une variable aléatoire X ?

Que vaut P\left(X = x_{1}\right) + P\left(X = x_{2}\right) +... + P\left(X = x_{n}\right) ?

Quelle est la bonne formule de calcul de l'espérance d'une variable aléatoire X parmi les 4 suivantes ?

  • E\left(X\right) =\sum _{i=10}^{n}x_{i} P\left(X = x_{i}\right)
  • E\left(X\right) =x_i\sum _{i=0}^{n} P\left(X = x_{i}\right)
  • E\left(X\right) =\sum _{i=0}^{n}x_{i} P\left(X = x_{i}\right)
  • E\left(X\right) =\sum _{i=0}^{n}X P\left(X = x_{i}\right)

Quelle est la bonne formule de calcul de la variance d'une variable aléatoire X parmi les 4 suivantes ?

  • V\left(X\right) =\sum _{i=0}^{n}\left[x_{i} - E\left(X\right)\right] P\left(X = x_{i}\right)^2
  • V\left(X\right) =\sum _{i=0}^{n}\left[x_{i} - E\left(X\right)\right]^{2} P\left(X = x_{i}\right)
  • V\left(X\right) =\sum _{i=0}^{n}\left[x_{i} + E\left(X\right)\right]^{2} P\left(X = x_{i}\right)
  • V\left(X\right) =\sum _{i=0}^{n}\left[x_{i} - X\right]^{2} P\left(X = x_{i}\right)

Quelle est la proposition fausse parmi les 4 suivantes ?

  • E\left(aX+b\right)=aE\left(x\right)+b
  • V\left(aX+b\right)=aV\left(X\right)+b
  • V\left(aX+b\right)=a^2 V\left(X\right)
  • \sigma\left(X\right)=\sqrt{V\left(X\right)}

Combien d'issues possède une épreuve de Bernoulli ?

Quelles valeurs prend une variable aléatoire qui suit une loi de Bernoulli ?

Que vaut l'espérance d'une loi de Bernoulli de paramètre p ?

En quoi consiste un schéma de Bernoulli ?

Si une variable aléatoire compte le nombre de succès (de probabilité p ) dans un schéma de Bernoulli (de n répétitions), quelle loi suit-elle ?

Si une variable aléatoire X suit une loi B\left(n;p\right), que vaut, \forall k \in [\![0 ; n]\!], la probabilité P\left(X = k\right) ?

Que vaut l'espérance de la loi B\left(n;p\right) ?

Que vaut la variance de la loi B\left(n;p\right) ?

Comment se lit le coefficient \binom nk ?

Voir aussi
  • Cours : Les lois de probabilités discrètes
  • Formulaire : Les lois de probabilités discrètes
  • Méthode : Représenter une expérience à l'aide d'un arbre de probabilités
  • Méthode : Utiliser la formule des probabilités totales
  • Méthode : Etablir la loi d'une variable aléatoire discrète quelconque
  • Méthode : Montrer qu'une variable aléatoire suit une loi binomiale
  • Méthode : Calculer une probabilité dans le cadre de la loi binomiale
  • Exercice : Représenter une expérience à l'aide d'un arbre de probabilités
  • Exercice : Distinguer la probabilité de l'intersection de la probabilité conditionnelle
  • Exercice : Utiliser la formule des probabilités totales
  • Exercice : Calculer des probabilités dans le cas d'une situation représentée par un arbre
  • Exercice : Etablir la loi d'une variable aléatoire discrète quelconque
  • Exercice : Montrer qu'une variable aléatoire suit une loi binomiale
  • Exercice : Calculer des probabilités dans le cadre d'une loi binomiale
  • Exercice : Calculer des probabilités en introduisant une loi binomiale

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025