01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première ES
  3. Mathématiques
  4. Quiz : Loi binomiale et fluctuations d'échantillonnage

Loi binomiale et fluctuations d'échantillonnage Quiz

Qu'appelle-t-on variable aléatoire réelle ?

Que signifie donner la loi de probabilité d'une variable aléatoire X ?

Que vaut P\left(X = x_{1}\right) + P\left(X = x_{2}\right) +... + P\left(X = x_{n}\right) ?

Quelle est la bonne formule de calcul de l'espérance d'une variable aléatoire X parmi les 4 suivantes ?

  • E\left(X\right) =\sum _{i=10}^{n}x_{i} P\left(X = x_{i}\right)
  • E\left(X\right) =x_i\sum _{i=0}^{n} P\left(X = x_{i}\right)
  • E\left(X\right) =\sum _{i=0}^{n}x_{i} P\left(X = x_{i}\right)
  • E\left(X\right) =\sum _{i=0}^{n}X P\left(X = x_{i}\right)

Combien d'issues possède une épreuve de Bernoulli ?

Quelles valeurs prend une variable aléatoire qui suit une loi de Bernoulli ?

Que vaut l'espérance d'une loi de Bernoulli de paramètre p ?

En quoi consiste un schéma de Bernoulli ?

Si une variable aléatoire compte le nombre de succès (de probabilité p ) dans un schéma de Bernoulli (de n répétitions), quelle loi suit-elle ?

Si une variable aléatoire X suit une loi B\left(n;p\right), que vaut, \forall k \in [\![0 ; n]\!], la probabilité P\left(X = k\right) ?

Que vaut l'espérance de la loi B\left(n;p\right) ?

Comment se lit le coefficient \binom nk ?

Comment obtient-on un échantillon de taille n ?

Si l'intervalle de fluctuation au coefficient 95 % de la fréquence correspondant à la réalisation, sur un échantillon aléatoire de taille n, d'une variable aléatoire X suivant une loi binomiale, est \left[ \dfrac{a}{n};\dfrac{b}{n} \right], comment détermine-t-on les nombres a et b ?

Si une fréquence est dans un intervalle de fluctuation à 95%, quel est le risque qu'elle ne s'y trouve pas ?

A quoi sert un intervalle de fluctuation ?

Voir aussi
  • Cours : Loi binomiale et fluctuations d'échantillonnage
  • Formulaire : Loi binomiale et fluctuations d'échantillonnage
  • Méthode : Reconnaître une loi binomiale
  • Méthode : Calculer et interpréter E(X) dans une loi binomiale
  • Méthode : Déterminer un intervalle de fluctuation
  • Méthode : Déterminer si un échantillon est représentatif d'une population
  • Exercice : Montrer qu'une variable aléatoire suit une loi binomiale
  • Exercice : Déterminer des coefficients binomiaux sans la calculatrice
  • Exercice : Calculer des probabilités en introduisant une loi binomiale
  • Exercice : Calculer l'espérance d'une loi binomiale
  • Exercice : Déterminer un intervalle de fluctuation dans le cadre d'une loi binomiale
  • Problème : Etudier un problème à l'aide d'une loi binomiale
  • Problème : Prendre une décision à l'aide d'un intervalle de fluctuation

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025