01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale S
  3. Mathématiques
  4. Problème : Asymptote oblique et position relative

Asymptote oblique et position relative Problème

On considère la fonction f définie sur \left]-4\,;\,+\infty\right[ par f\left(x\right)=\dfrac{-x^{2} - 4 \; x + 24}{2 \; x + 8}.

On note \mathscr{C} sa courbe représentative dans un repère orthogonal \left(O;\vec{\imath},\vec{\jmath}\right).

Quel est le tableau de variations de f sur son ensemble de définition ?

On considère la fonction f.

a

Quelles sont les limites de f aux bornes de son ensemble de définition ?

b

Quelle asymptote obtient-on des limites précédentes ?

On admet que, pour tout réel x \gt -4, f\left(x\right)=-\dfrac{1}{2}x+\dfrac{12}{x+4}.

a

Quelle droite est une asymptote à \mathscr{C} au voisinage de +\infty ?

b

Quelle est la position relative de l'asymptote précédente par rapport à \mathscr{C} ?

Quel est le graphique correspondant à \mathscr{C} et les asymptotes obtenues dans l'exercice ?

Exercice suivant
Voir aussi
  • Cours : Les limites de fonctions
  • Quiz : Les limites de fonctions
  • Méthode : Déterminer la limite d'une fonction composée
  • Méthode : Déterminer la limite d'une fonction lorsque x tend vers une valeur interdite
  • Méthode : Démontrer qu'une courbe admet une asymptote horizontale
  • Méthode : Démontrer qu'une courbe admet une asymptote verticale
  • Méthode : Etudier la position relative d'une courbe et d'une droite
  • Exercice : Comprendre la notion de limite
  • Exercice : Déterminer une limite simple lorsque x tend vers l'infini
  • Exercice : Déterminer une limite simple lorsque x tend vers un réel
  • Exercice : Déterminer une limite simple lorsque x tend vers une valeur interdite
  • Exercice : Déterminer la limite d'une fonction composée
  • Exercice : Déterminer la limite d'un polynôme
  • Exercice : Déterminer la limite d'une fonction rationnelle
  • Exercice : Déterminer une limite en utilisant le théorème des gendarmes
  • Exercice : Déterminer une limite en utilisant un théorème de comparaison
  • Exercice : Déterminer une limite en utilisant la quantité conjuguée
  • Exercice : Déterminer une limite en utilisant le taux d'accroissement
  • Exercice : Démontrer qu'une courbe admet une asymptote horizontale
  • Exercice : Démontrer qu'une courbe admet une asymptote verticale
  • Exercice : Déterminer toutes les asymptotes d'une courbe
  • Exercice : Reconnaître une courbe par ses asymptotes
  • Exercice : Déterminer graphiquement les limites d'une fonction
  • Exercice : Déterminer les limites d'une fonction et les asymptotes de sa courbe par lecture du tableau de variations

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025