01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale ES
  3. Mathématiques
  4. Formulaire : La dérivation

La dérivation Formulaire

Dérivées des fonctions usuelles

Soient un réel \lambda et un entier naturel n ; on désigne par D_{f} le domaine de définition de f et par D_{f'} son domaine de dérivabilité.

f\left(x\right) f'\left(x\right) D_{f} D_{f'}
\lambda 0 \mathbb{R} \mathbb{R}
x 1 \mathbb{R} \mathbb{R}
x^{n} \left(n \geq 1\right) nx^{n-1} \mathbb{R} \mathbb{R}
\dfrac{1}{x^n}\left(n \geq 1\right) -\dfrac{n}{x^{n+1}} \mathbb{R}^{*} \mathbb{R}^{*}
\sqrt{x} \dfrac{1}{2\sqrt{x}} \mathbb{R}^{+} \mathbb{R}^{+{\textcolor{Red}*}}

Opérations sur les fonctions dérivées et fonctions composées

Soit un réel \lambda, on désigne par u et v deux fonctions dérivables sur un intervalle I.

f f'
\lambda u \lambda u'
u + v u' + v'
uv u'v + uv'
\dfrac{1}{u} (si u ne s'annule pas sur I ) -\dfrac{u’}{u^2}
\dfrac{u}{v} (si v ne s'annule pas sur I ) \dfrac{u'v–uv’}{v^2}

u^{n} \left(n \geq 1\right)

nu'u^{n-1}

\sqrt{u} (si u\left(x\right) {\textcolor{Red}\gt} 0 )

\dfrac{u’}{2\sqrt{u}}
Voir aussi
  • Cours : La dérivation
  • Quiz : La dérivation
  • Méthode : Déterminer graphiquement la valeur de f'(a)
  • Méthode : Dériver une fonction
  • Méthode : Déterminer le signe d'une dérivée
  • Méthode : Dresser le tableau de variations d'une fonction
  • Méthode : Déterminer une équation d'une tangente à la courbe
  • Méthode : Déterminer la position relative d'une courbe et de sa tangente
  • Méthode : Déterminer le signe d'une fonction à partir de son tableau de variations
  • Méthode : Retrouver une tangente particulière
  • Méthode : Obtenir le signe de la dérivée à partir de la représentation graphique de f
  • Méthode : Obtenir le sens de variation de f à partir de la représentation graphique de f'
  • Exercice : Donner graphiquement la valeur de la dérivée en un réel
  • Exercice : Utiliser les formules de dérivées usuelles
  • Exercice : Dériver un produit de fonctions
  • Exercice : Dériver une fonction élevée à une puissance entière
  • Exercice : Dériver une fonction quotient
  • Exercice : Dériver une fonction composée de la fonction inverse
  • Exercice : Dériver une fonction racine carrée
  • Exercice : Donner une équation de tangente
  • Exercice : Déterminer le signe d'une fonction à partir de son tableau de variations
  • Exercice : Retrouver une tangente particulière
  • Exercice : Déterminer graphiquement le signe de la dérivée
  • Exercice : Déterminer le sens de variation d'une fonction grâce à la représentation graphique de sa dérivée

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025