01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Méthode : Montrer qu'une suite est géométrique et donner sa forme explicite

Montrer qu'une suite est géométrique et donner sa forme explicite Méthode

Sommaire

1Exprimer v_{n+1} en fonction de v_n 2Conclure que \left(v_n\right) est géométrique 3Donner l'expression de v_n en fonction de n

Une suite géométrique est une suite \left(v_n\right) telle que \forall n \in \mathbb{N}, v_{n+1} = v_n \times q, avec q\in \mathbb{R}. On passe d'un terme au suivant en multipliant toujours par le même réel q.

Une fois que l'on a identifié une suite géométrique, on peut donner sa forme explicite.

Soit la suite \left(u_n\right) définie par :

\begin{cases} u_0 = 2 \cr \cr \forall n \in \mathbb{N}, \; u_{ n+1} = 3u_n -1\end{cases}

Soit la suite \left(v_n\right) définie par :

\forall n \in \mathbb{N}, v_n =u_n -\dfrac{1}{2}

Montrer que \left(v_n\right) est géométrique. Donner sa forme explicite.

Etape 1

Exprimer v_{n+1} en fonction de v_n

Pour tout entier n, on calcule v_{n+1} et on fait apparaître l'expression de v_n, pour pouvoir exprimer v_{n+1} en fonction de v_n.

On cherche à obtenir un résultat de la forme : v_{n+1} = v_n \times q , avec q \in\mathbb{R}.

On calcule v_{n+1} :

\forall n \in \mathbb{N}, v_{n+1} =u_{n+1} -\dfrac{1}{2} = 3u_n -1 - \dfrac{1}{2} = 3u_n -\dfrac{3}{2}

On exprime ensuite v_{n+1} en fonction de v_n.

On sait que :

\forall n \in \mathbb{N}, v_{n} =u_{n} -\dfrac{1}{2}

Donc :

\forall n \in \mathbb{N}, u_{n} =v_{n} +\dfrac{1}{2}

Ainsi :

\forall n \in \mathbb{N}, v_{n+1} =3\left(v_{n} +\dfrac{1}{2} \right) -\dfrac{3}{2} = 3v_{n} +\dfrac{3}{2} -\dfrac{3}{2} = 3v_n

Etape 2

Conclure que \left(v_n\right) est géométrique

Si \forall n \in \mathbb{N}, v_{n+1}=v_n\times q, avec q \in \mathbb{R}, alors \left(v_n\right) est une suite géométrique.

On précise la valeur de sa raison q et de son premier terme (en général v_0 ).

Lorsque l'on montre que pour tout entier n, v_{n+1}= v_n \times q , la raison q doit être un réel qui ne dépend pas de n.

Pour tout entier n, on a v_{n+1} = 3v_n.

Donc \left(v_n\right) est géométrique de raison q=3 et de premier terme v_0 = u_0-\dfrac{1}{2} = 2-\dfrac{1}{2} = \dfrac{3}{2}.

Etape 3

Donner l'expression de v_n en fonction de n

Si \left(v_n\right) est géométrique de raison q et de premier terme v_0, alors :

\forall n \in \mathbb{N}, v_n = v_0 \times q^n

Plus généralement, si le premier terme est v_p, alors :

\forall n \geq p, v_n = v_p\times q^{n-p}

Comme \left(v_n\right) est géométrique de raison q=3 et de premier terme v_0=\dfrac{3}{2}, alors \forall n \in \mathbb{N}, v_n = v_0 \times q^n.

Ainsi :

\forall n \in \mathbb{N}, v_n = \dfrac{3}{2}\times 3^n

Pour montrer qu'une suite \left(v_n\right) est géométrique, on peut également montrer qu'il existe un réel q tel que pour tout entier n, \dfrac{v_{n+1}}{v_n} = q.

Cependant, on ne peut utiliser cette méthode que si l'on a préalablement montré que pour tout entier n, v_n \neq 0.

Voir aussi
  • Cours : Suites numériques
  • Méthode : Déterminer le sens de variation d'une suite arithmétique
  • Méthode : Déterminer le sens de variation d'une suite géométrique
  • Exercice : Connaître le vocabulaire et la notation des suites
  • Exercice : Identifier le mode de génération d'une suite
  • Exercice : Calculer les premiers termes d'une suite définie de manière explicite
  • Exercice : Calculer les premiers termes d'une suite définie par récurrence
  • Exercice : Associer sens de variation et critère sur les termes successifs d'une suite
  • Exercice : Lire graphiquement la valeur d'un terme d'une suite définie explicitement
  • Exercice : Lire graphiquement la valeur d'un terme d'une suite définie par récurrence
  • Problème : Calculer une factorielle à l'aide d'un algorithme
  • Exercice : Conjecturer la limite éventuelle d'une suite à l'aide de sa représentation graphique
  • Exercice : Conjecturer la limite éventuelle d'une suite à l'aide de ses termes consécutifs
  • Problème : Écrire un algorithme de seuil
  • Exercice : Identifier une suite arithmétique à l'aide de son expression explicite
  • Exercice : Identifier une suite arithmétique à l'aide de sa relation de récurrence
  • Exercice : Identifier une suite arithmétique à l'aide de sa représentation graphique
  • Exercice : Identifier une suite arithmétique à l'aide d'une description en langue naturelle
  • Exercice : Déterminer si une suite est arithmétique
  • Exercice : Calculer les premiers termes d'une suite arithmétique définie par récurrence
  • Exercice : Calculer la raison et le premier terme d'une suite arithmétique à l'aide de son expression explicite
  • Exercice : Déterminer le premier terme et la raison d'une suite arithmétique
  • Exercice : Calculer la raison et le premier terme d'une suite arithmétique modélisant un phénomène discret à croissance linéaire
  • Exercice : Calculer le terme général d'une suite arithmétique à l'aide de son premier terme et de sa raison
  • Exercice : Calculer le terme général d'une suite arithmétique définie par récurrence
  • Exercice : Calculer le terme général d'une suite arithmétique définie par un algorithme
  • Exercice : Déterminer le sens de variation d'une suite arithmétique à l'aide de sa raison
  • Problème : Étudier une suite arithmétique définie par récurrence
  • Problème : Étudier une suite arithmétique définie par un algorithme de calcul
  • Problème : Étudier un phénomène discret à croissance linéaire à l'aide d'une suite arithmétique
  • Problème : Écrire un algorithme de calcul d'un terme d'une suite arithmétique
  • Problème : Déterminer la fonction génératrice d'une suite arithmétique
  • Exercice : Identifier une suite géométrique à l'aide de son expression explicite
  • Exercice : Identifier une suite géométrique à l'aide de sa relation de récurrence
  • Exercice : Identifier une suite géométrique à l'aide de sa représentation graphique
  • Exercice : Identifier une suite géométrique à l'aide d'une description en langue naturelle
  • Exercice : Déterminer si une suite est géométrique
  • Exercice : Calculer les premiers termes d'une suite géométrique définie par récurrence
  • Exercice : Calculer la raison et le premier terme d'une suite géométrique à l'aide de son expression explicite
  • Exercice : Déterminer le premier terme et la raison d'une suite géométrique
  • Exercice : Calculer la raison et le premier terme d'une suite géométrique modélisant un phénomène discret à croissance exponentielle
  • Exercice : Calculer le terme général d'une suite géométrique à l'aide de son premier terme et de sa raison
  • Exercice : Calculer le terme général d'une suite géométrique définie par récurrence
  • Exercice : Calculer le terme général d'une suite géométrique définie par un algorithme
  • Exercice : Déterminer le sens de variation d'une suite géométrique à l'aide de sa raison
  • Problème : Étudier une suite géométrique définie par récurrence
  • Problème : Étudier une suite géométrique définie par un algorithme de calcul
  • Problème : Utilisation d'une suite géométrique dans une situation réelle
  • Problème : Écrire un algorithme de calcul d'un terme d'une suite géométrique
  • Exercice : Calculer une somme d'entiers consécutifs
  • Exercice : Calculer la somme des termes consécutifs d'une suite arithmétique
  • Exercice : Calculer la somme des puissances de 1 à n d'un nombre réel donné
  • Exercice : Calculer la somme des termes consécutifs d'une suite géométrique
  • Exercice : Calculer une somme
  • Problème : Calculer la somme des n premiers carrés
  • Problème : Calculer la somme des n premiers cubes
  • Problème : Étudier la tour de Hanoï
  • Problème : Étudier une suite de Syracuse
  • Problème : Étudier une suite de Fibonacci
  • Quiz : Suites numériques
  • Méthode : Calculer les premiers termes d'une suite
  • Méthode : Représenter graphiquement une suite définie de manière explicite
  • Méthode : Représenter graphiquement une suite définie par récurrence
  • Méthode : Montrer qu'une suite est bornée
  • Méthode : Montrer qu'une suite est arithmétique et donner sa forme explicite
  • Méthode : Calculer une somme de termes consécutifs d'une suite

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025