01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Exercice : Compléter un arbre pondéré correspondant à une situation donnée

Compléter un arbre pondéré correspondant à une situation donnée Exercice

Dans chacun des cas suivants, compléter l'arbre pondéré selon la situation proposée.

Lors d'une expérience, on lance un dé à six faces numérotées de 1 à 6.

Soient deux événements indépendants définis par :

  • A l'événement : « Le chiffre est supérieur ou égal à 5 » ;
  • B l'événement : « On obtient un chiffre pair ».

 

On sait que P(\bar{A}\cap \bar{B})=\dfrac{1}{3} et l'arbre pondéré incomplet suivant :

-

Lors d'une expérience, on lance un dé à six faces numérotées de 1 à 6.

Soient deux événements indépendants définis par :

  • A l'événement : « Le chiffre est inférieur ou égal à 4 » ;
  • B l'événement : « On obtient un chiffre pair ».

 

On sait que P(\bar{A}\cap \bar{B})=\dfrac{1}{6} et l'arbre pondéré incomplet suivant :

-

Lors d'une expérience, on pioche une boule dans un sachet contenant 10 boules noires numérotées de 1 à 10 et 5 boules blanches numérotés de 1 à 5.

Soient deux événements indépendants définis par :

  • A l'événement : « La boule est blanche » ;
  • B l'événement : « Le chiffre est pair ».

 

On sait que P(\bar{A}\cap \bar{B})=\dfrac{1}{3} et l'arbre pondéré incomplet suivant :

-

Lors d'une expérience, on pioche une boule dans un sachet contenant 10 boules noires numérotées de 1 à 10 et 5 boules blanches numérotés de 1 à 5.

Soient deux événements indépendants définis par :

  • A l'événement : « La boule est blanche » ;
  • B l'événement : « Le chiffre est supérieur ou égal à 4 ».

 

On sait que P(\bar{A}\cap \bar{B})=\dfrac{1}{5} et l'arbre pondéré incomplet suivant :

-

Lors d'une expérience, on pioche une boule dans un sachet contenant 10 boules noires numérotées de 1 à 10 et 5 boules blanches numérotés de 1 à 5.

Soient deux événements indépendants définis par :

  • A l'événement : « La boule est noire » ;
  • B l'événement : « Le chiffre est supérieur ou égal à 5 ».

 

On sait que P(\bar{A}\cap \bar{B})=\dfrac{4}{15} et l'arbre pondéré incomplet suivant :

-
Voir aussi
  • Cours : Probabilités conditionnelles et indépendance
  • Quiz : Probabilités conditionnelles et indépendance
  • Exercice : Définir l'univers d'une expérience
  • Exercice : Connaître la définition d'une probabilité conditionnelle
  • Exercice : Reconnaître une probabilité conditionnelle expliquée en langage naturel
  • Exercice : Différencier faux positif, faux négatif, vrai positif et vrai négatif
  • Exercice : Calculer une probabilité conditionnelle à l'aide des probabilités de l'intersection et de l'événement
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle du produit des probabilités inscrites sur les branches
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle de la somme des probabilités inscrites sur les branches issues d'un même nœud
  • Exercice : Déterminer si deux événements sont indépendants à l'aide de la probabilité de leur intersection
  • Exercice : Calculer une probabilité conditionnelle dans le cas d'événements indépendants
  • Exercice : Extraire les probabilités d'un problème en langage naturel
  • Exercice : Déterminer la complétude de systèmes d'événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition à deux événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition simple à plus de deux événements
  • Exercice : Donner la signification d'une case d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'un événement à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer une probabilité conditionnelle à l'aide d'un tableau croisé d'effectifs
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un tableau croisé d'effectifs
  • Exercice : Compléter un tableau croisé d'effectifs correspondant à une situation donnée
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un tableau croisé d'effectifs
  • Problème : Étudier une succession de deux épreuves indépendantes dans un tableau croisé d'effectifs
  • Problème : Étudier un problème de probabilité à l'aide d'un tableau croisé d'effectifs
  • Exercice : Transformer un tableau croisé d'effectifs en arbre pondéré
  • Exercice : Donner la signification d'une branche dans un arbre pondéré
  • Exercice : Lire une probabilité sur un arbre pondéré
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes et d'un arbre pondéré
  • Exercice : Calculer la probabilité d'un événement à l'aide de la formule des probabilités totales dans un arbre pondéré
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un arbre pondéré
  • Exercice : Représenter une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Estimer l'aire sous une parabole avec la méthode de Monte-Carlo
  • Problème : Estimer pi avec la méthode de Monte-Carlo
  • Problème : Étudier une succession de plus de deux épreuves indépendantes
  • Problème : Étudier une marche aléatoire
  • Méthode : Etudier le sens de variation d'une fonction
  • Méthode : Représenter une expérience aléatoire à l'aide d'un arbre pondéré

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025