01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Exercice : Déterminer le plus grand diviseur commun de deux nombres entiers naturels

Déterminer le plus grand diviseur commun de deux nombres entiers naturels Exercice

Quel est le plus grand diviseur commun de 24 et 36 ?

Quel est le plus grand diviseur commun de 41 et 36 ?

Quel est le plus grand diviseur commun de 65 et 26 ?

Quel est le plus grand diviseur commun de 90 et 525 ?

Quel est le plus grand diviseur commun de 525 et 1050 ?

Voir aussi
  • Cours : Utiliser les notions de multiple, diviseur et de nombre premier
  • Quiz : Utiliser les notions de multiple, diviseur et de nombre premier
  • Exercice : Connaître les caractéristiques des ensembles de nombres entiers
  • Exercice : Connaître les caractéristiques des multiples et des diviseurs
  • Exercice : Déterminer si un nombre est multiple d'un autre
  • Exercice : Déterminer si un nombre est diviseur d'un autre
  • Exercice : Traduire à l'aide de relations entre multiples et diviseurs un problème numérique faisant intervenir les multiples ou les diviseurs
  • Problème : Résoudre un problème faisant intervenir les multiples ou les diviseurs
  • Problème : Écrire un algorithme déterminant si un entier naturel est multiple d'un autre entier naturel
  • Problème : Écrire un algorithme déterminant le plus grand multiple d'un nombre entier inférieur ou égal à un autre entier naturel
  • Problème : Démontrer que la somme de deux multiples de a est multiple de a
  • Problème : Résoudre un problème théorique faisant intervenir les multiples ou les diviseurs
  • Exercice : Connaître les caractéristiques des nombres pairs et impairs
  • Exercice : Déterminer si un nombre est pair ou impair
  • Exercice : Traduire à l'aide de nombres pairs ou impairs un problème numérique faisant intervenir la parité d'un nombre
  • Problème : Résoudre un problème à l'aide de la parité d'un nombre
  • Problème : Démontrer que le carré d’un nombre impair est impair
  • Problème : Résoudre un problème théorique à l'aide de la parité d'un nombre
  • Exercice : Connaître les caractéristiques des nombres premiers
  • Exercice : Connaître les premiers nombres premiers
  • Exercice : Déterminer si un nombre est premier
  • Exercice : Traduire à l'aide de nombres premiers un problème numérique faisant intervenir les nombres premiers
  • Exercice : Décomposer un nombre en produit de facteurs premiers
  • Exercice : Simplifier une fraction sous forme irréductible
  • Problème : Écrire un algorithme vérifiant qu'un nombre entier naturel est premier
  • Problème : Résoudre un problème théorique à l'aide de nombres premiers

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025