01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Problème : Etudier un problème de la surréservation à l'aide d'un algorithme

Etudier un problème de la surréservation à l'aide d'un algorithme Problème

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 18/12/2020 - Conforme au programme 2024-2025

Les compagnies aériennes décident souvent de vendre plus de places qu'il n'y a de places disponibles dans leurs avions, pour éviter le manque à gagner en cas de désistements. On suppose ici que la compagnie KartAir propose un vol Paris-Rio de 300 places.

On estime la probabilité de désistement des passagers de 10 %. On note n le nombre de réservations que la compagnie a enregistrées, et  S_n le nombre de passagers ne s'étant pas désistés.

On cherche à trouver la valeur n de tickets à vendre pour que la probabilité que le nombre de passagers se présentant à l'embarquement ne dépasse pas la capacité de l'avion soit inférieur à 99 %, c'est-à-dire pour que la compagnie ne paye aucun dédommagement.

Quelle est la condition que souhaite avoir la compagnie aérienne ?

Quelle est la loi de S_n ?

On admet que la variable T_n = \dfrac{S_n - m}{\sigma} suit une loi normale centrée réduite, avec m l'espérance de S_n et \sigma son écart-type.

Que valent m et \sigma  ?

Quelle inégalité est vraie pour n si S_n \leq 300 ?

Donnée : on a P(T_n \leq t) = 0{,}99 si t = 2{,}33 .

Combien de tickets la compagnie KartAir doit-elle vendre pour avoir 99 % de chance de ne pas payer de dédommagement ?

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : La loi binomiale
  • Quiz : La loi binomiale
  • Exercice : Modéliser une situation par une succession d’épreuves indépendantes
  • Exercice : Représenter une situation modélisable en succession d’épreuves indépendantes par un arbre
  • Exercice : Modéliser une situation par une succession de deux ou trois épreuves quelconques
  • Exercice : Représenter une situation modélisable en succession de deux ou trois épreuves quelconques par un arbre
  • Exercice : Calculer une probabilité en utilisant l’indépendance
  • Exercice : Calculer une probabilité en utilisant des probabilités conditionnelles
  • Exercice : Calculer une probabilité en utilisant la formule des probabilités totales
  • Exercice : Connaître les caractéristiques d'une épreuve de Bernoulli
  • Exercice : Connaître les caractéristiques d'un schéma de Bernoulli
  • Exercice : Déterminer si une situation est une épreuve de Bernoulli
  • Exercice : Déterminer si une situation suit un schéma de Bernoulli
  • Exercice : Déterminer le schéma de Bernoulli d'une situation
  • Exercice : Connaître les caractéristiques de la loi binomiale
  • Exercice : Déterminer le loi binomiale correspondant à une situation
  • Exercice : Calculer numériquement une probabilité du type P(X = k) d'une loi binomiale
  • Exercice : Calculer numériquement une probabilité du type P(X ≤ k) d'une loi binomiale
  • Exercice : Calculer numériquement une probabilité du type P(k ≤ X ≤ k’ ) d'une loi binomiale
  • Exercice : Déterminer un intervalle sur lequel P(X) est inférieure à une valeur donnée pour une loi binomiale
  • Exercice : Déterminer un intervalle sur lequel P(X) est supérieure à une valeur donnée pour une loi binomiale
  • Exercice : Démontrer l'expression de la probabilité de k succès dans le schéma de Bernoulli
  • Problème : Résoudre un problème de seuil à l'aide de l'expression de la loi binomiale
  • Problème : Résoudre un problème de comparaison à l'aide de l'expression de la loi binomiale
  • Problème : Résoudre un problème d’optimisation relatif à des probabilités de nombre de succès à l'aide de l'expression de la loi binomiale
  • Problème : Simuler la planche de Galton à l'aide d'un algorithme
  • Problème : Simuler un échantillon d’une variable aléatoire à l'aide d'un algorithme
  • Exercice type bac : Polynésie 2024, Lancer d'une pièce équilibrée
  • Méthode : Reconnaître une loi binomiale
  • Méthode : Calculer et interpréter E(X) dans une loi binomiale
  • Méthode : Montrer qu'une variable aléatoire suit une loi binomiale
  • Méthode : Calculer une probabilité dans le cadre de la loi binomiale

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025