01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale S
  3. Mathématiques
  4. Exercice type bac : Etudier une suite récurrente

Etudier une suite récurrente Exercice type bac

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 07/08/2019 - Conforme au programme 2019-2020

Soient f une fonction définie sur l'intervalle \left[0 ; 1\right], continue et positive sur cet intervalle, et a un réel tel que 0 \lt a \lt 1.

On note :

  • C la courbe représentative de la fonction f dans un repère orthogonal
  • A1 l'aire du domaine plan limité par l'axe des abscisses et la courbe C d'une part, les droites d'équations x = 0 et x = a d'autre part.
  • A2 l'aire du domaine plan limité par l'axe des abscisses et la courbe C d'une part, les droites d'équations x = a et x = 1 d'autre part.

Le but de cet exercice est de déterminer, pour différentes fonctions f, une valeur du réel a vérifiant la condition (E) : "Les aires A1 et A2 sont égales".

On admet l'existence d'un tel réel a pour chacune des fonctions considérées.

-

Dans cette partie, on considère la fonction f définie pour tout réel x de \left[ 0;1 \right] par f\left(x\right) = 4 - 3x^{2}.

Quelle proposition démontre que si a est un réel satisfaisant la condition (E), alors a est solution de l'équation suivante ?

x = \dfrac{x^{3}}{4}+\dfrac {3}{8}

On considère la fonction g définie pour tout réel x de l'intervalle \left[ 0;1 \right] par g\left(x\right) = \dfrac{x^{3}}{4}+\dfrac {3}{8} et la suite \left(u_n\right) définie par : \begin{cases} u_0=0\\ u_{n+1}=g\left(u_n\right), \forall n\in\mathbb{N} \end{cases}

a

Quelle est la valeur de u_1 ?

b

Quelle proposition démontre que la fonction g est croissante sur l'intervalle \left[ 0;1 \right] ?

c

Quelle proposition démontre par récurrence que, pour tout entier naturel n, on a : 0 \leqslant u_{n} \leqslant u_{n+1} \leqslant 1 ?

d

Quelle proposition démontre que la suite \left(u_n\right) est convergente et que sa limite est égale à a ?

e

On admet que le réel a vérifie l'inégalité 0 \lt a-u_{10} \lt 10^{-9}.

Quelle est la valeur de u_{10} à 10^{-8} près ?

Exercice suivant

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Les suites
  • Quiz : Les suites
  • Méthode : Démontrer une propriété par récurrence
  • Méthode : Etudier la convergence d'une suite
  • Méthode : Lever une indétermination
  • Méthode : Etudier la monotonie d'une suite
  • Méthode : Montrer qu'une suite est arithmétique
  • Méthode : Montrer qu'une suite est géométrique
  • Méthode : Etudier une suite à l'aide d'une suite auxiliaire
  • Exercice : Représenter une suite définie de manière explicite
  • Exercice : Représenter une suite définie par récurrence
  • Exercice : Démontrer une égalité par récurrence
  • Exercice : Donner la valeur simplifiée d'une somme par récurrence
  • Exercice : Démontrer la divisibilité d'une expression par récurrence
  • Exercice : Démontrer par récurrence qu'une suite est bornée
  • Exercice : Déterminer une limite en factorisant par le terme de plus haut degré
  • Exercice : Utiliser l'expression conjuguée pour lever une indétermination
  • Exercice : Limites, théorème des gendarmes et comparaison
  • Exercice : Calculer la limite d'une suite géométrique
  • Exercice : Utiliser la limite d'une suite géométrique
  • Exercice : Etudier la monotonie d'une suite par le calcul
  • Exercice : Divergence d'une suite définie par récurrence
  • Exercice : Déterminer la somme des termes consécutifs d'une suite géométrique
  • Exercice type bac : Etude d'un cas concret à l'aide d'une suite
  • Exercice type bac : Suites et conjectures à l'aide d'un algorithme

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025