On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{2x-3}{x-5}
Les asymptotes verticales de f sont tracées en rouge.
Quelle est la limite \lim\limits_{x\rightarrow 5^+} f(x) ?
On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{3x-4}{2x-2}
Les asymptotes verticales de f sont tracées en rouge.
Quelle est la limite \lim\limits_{x\rightarrow 1^+} f(x) ?
On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{x+2}{x-2}+\dfrac{x-2}{x+2}
Les asymptotes verticales de f sont tracées en rouge.
Quelle est la limite \lim\limits_{x\rightarrow -2^-} f(x) ?
On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{3x^2+6x+4}{x^2-9}
Les asymptotes verticales de f sont tracées en rouge.
Quelle est la limite \lim\limits_{x\rightarrow 3^-} f(x) ?
On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{x-4}{(x-1)^2}
Les asymptotes verticales de f sont tracées en rouge.
Quelle est la limite \lim\limits_{x\rightarrow 1^-} f(x) ?