01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice : Connaître les caractéristiques de la convexité

Connaître les caractéristiques de la convexité Exercice

Vrai ou faux ? Une fonction est soit convexe soit concave sur son ensemble de définition.

Soit f une fonction définie sur un intervalle I de \mathbb{R}.

Parmi les affirmations suivantes, lesquelles sont vraies ?

Soit f une fonction définie sur un intervalle I de \mathbb{R}.

Parmi les affirmations suivantes, lesquelles sont vraies ?

Soit f une fonction définie et dérivable sur un intervalle I de \mathbb{R}.

Que peut-on affirmer sur la convexité de f à partir du sens de variation de f' ?

Soit f une fonction définie et deux fois dérivable sur un intervalle I de \mathbb{R}.

Que peut-on affirmer sur la convexité de f à partir du signe de f'' ?

Vrai ou faux ? Un point d'inflexion est un point de la courbe représentative d'une fonction qui marque un changement de convexité.

Soient f une fonction définie sur un intervalle I de \mathbb{R}, C sa courbe représentative dans un repère et A un point de C.

Vrai ou faux ? On dit que A est un point d'inflexion de C si C admet une tangente en A et qu'elle traverse cette tangente en A.

Soient f une fonction définie et deux fois dérivable sur un intervalle I de \mathbb{R}, C sa courbe représentative dans un repère et A le point de C d'abscisse a.

Parmi les affirmations suivantes, lesquelles sont vraies ?

Voir aussi
  • Cours : La dérivation
  • Quiz : La dérivation
  • Exercice : Connaître la dérivée d'une fonction composée
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée par une fonction carré
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée par une fonction cube
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée par une fonction inverse
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée par une fonction racine carrée
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée par une fonction puissance
  • Exercice : Déterminer le domaine de dérivabilité d'un fonction composée
  • Exercice : Dériver une fonction composée par une fonction carré
  • Exercice : Dériver une fonction composée par une fonction cube
  • Exercice : Dériver une fonction composée par une fonction inverse
  • Exercice : Dériver une fonction composée par une fonction racine carrée
  • Exercice : Dériver une fonction composée par une fonction puissance
  • Exercice : Dériver une fonction composée par une fonction
  • Exercice : Calculer la dérivée seconde d'une fonction usuelle
  • Exercice : Calculer la dérivée seconde d'une fonction composée
  • Exercice : Calculer la dérivée seconde de plusieurs opérations de fonctions usuelles
  • Exercice : Calculer la dérivée seconde de plusieurs opérations de fonctions composées
  • Exercice : Déterminer graphiquement si une fonction simple est convexe ou concave
  • Exercice : Déterminer graphiquement les intervalles où une fonction est convexe ou concave à l'aide de la courbe représentative de la fonction
  • Exercice : Déterminer graphiquement les intervalles où une fonction est convexe ou concave à l'aide de la courbe représentative de la dérivée
  • Exercice : Déterminer graphiquement les intervalles où une fonction est convexe ou concave à l'aide de la courbe représentative de la dérivée seconde
  • Exercice : Déterminer si une fonction usuelle est convexe ou concave
  • Exercice : Déterminer si une fonction composée est convexe ou concave
  • Exercice : Déterminer si une opération de fonctions usuelles est convexe ou concave
  • Exercice : Déterminer si une opération de fonctions composées est convexe ou concave
  • Exercice : Déterminer graphiquement le point d'inflexion d'une fonction
  • Exercice : Déterminer le point d'inflexion d'une fonction usuelle
  • Exercice : Déterminer le point d'inflexion d'une fonction composée
  • Exercice : Déterminer le point d'inflexion d'une opération de fonctions usuelles
  • Exercice : Déterminer le point d'inflexion d'une opération de fonctions composées
  • Exercice : Esquisser l’allure de la courbe représentative d’une fonction à partir de son tableau de variation
  • Exercice : Esquisser l’allure de la courbe représentative d’une fonction à partir du tableau de variation de sa dérivée
  • Exercice : Esquisser l’allure de la courbe représentative d’une fonction à partir du tableau de variation de sa dérivée seconde
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions usuelles
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions composées
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir d'opérations de fonctions usuelles
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir d'opérations de fonctions composées
  • Problème : Etudier la convexité d’une fonction usuelle
  • Problème : Etudier la convexité d’une fonction composée
  • Problème : Etudier la convexité de plusieurs opérations de fonctions usuelles
  • Problème : Etudier la convexité de plusieurs opérations de fonctions composées
  • Exercice : Démontrer que si la dérivée seconde de f est positive, alors la courbe représentative de f est au-dessus de ses tangentes
  • Méthode : Dériver une fonction comportant une exponentielle
  • Méthode : Réaliser une étude de fonction

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025