01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice type bac : Centres étrangers 2024, Etude d'une suite de fonctions exponentielles

Centres étrangers 2024, Etude d'une suite de fonctions exponentielles Exercice type bac

On considère la fonction f définie sur l'intervalle [0 ; 1] par f(x)=2xe^{-x}.

On admet que la fonction f est dérivable sur l'intervalle [0 ; 1].

a

Quel est l'ensemble des solutions de l'équation f (x) = x sur l'intervalle [0 ; 1] ?

b

Quelle est l'expression de f'(x) pour tout x appartenant à l'intervalle [0 ; 1] ?

c

Quel est le tableau de variations de la fonction f sur l'intervalle [0 ; 1] ?

On considère la suite (u_n ) définie par u_0 = 0{,}1 et pour tout entier naturel n, u_{n+1} = f (u_n ).

a

Quelle inégalité est vraie pour tout entier naturel n ?

b

La suite (u_n ) est-elle convergente ?

Quelle est la limite de la suite (u_n) ?

a

Pour tout entier naturel n, de quel signe est \ln(2) - u_n ?

b

On souhaite écrire un script Python qui renvoie une valeur approchée de \ln(2) par défaut à 10^{-4} près, ainsi que le nombre d'étapes pour y parvenir.

Quel script permet de répondre au problème posé ?

c

Quelle est la valeur de la variable n renvoyée par la fonction seuil () ?

Voir aussi
  • Cours : Les suites
  • Quiz : Les suites
  • Exercice : Connaître les caractéristiques des limites infinies de suites
  • Exercice : Connaître les caractéristiques des limites finies de suites
  • Exercice : Connaître les caractéristiques d'une suite convergente
  • Exercice : Connaître les caractéristiques d'une suite divergente
  • Exercice : Conjecturer graphiquement si une suite est convergente ou divergente
  • Exercice : Conjecturer graphiquement la limite d'une suite
  • Exercice : Compléter les limites d'une somme de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'une somme de suites dont on connaît la limite
  • Exercice : Compléter les limites d'un produit de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'un produit de suites dont on connaît la limite
  • Exercice : Compléter les limites d'un quotient de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'un quotient de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'une opération de suites dont on connaît la limite
  • Exercice : Connaître le théorème des gendarmes
  • Exercice : Déterminer la limite d'une suite à l'aide du théorème des gendarmes
  • Exercice : Déterminer la convergence d'une suite géométrique
  • Exercice : Déterminer la convergence d'une combinaison linéaire de suites géométriques
  • Exercice : Connaître les étapes du raisonnement par récurrence
  • Exercice : Démontrer qu'une suite est majorée par récurrence
  • Exercice : Démontrer qu'une suite est minorée par récurrence
  • Exercice : Démontrer qu'une suite est bornée par récurrence
  • Exercice : Démontrer une égalité par récurrence
  • Exercice : Démontrer une inégalité par récurrence
  • Exercice : Démontrer que toute suite croissante non majorée tend vers +infini
  • Exercice : Démontrer par récurrence l’inégalité de Bernoulli
  • Exercice : Démontrer la limite d'une suite géométrique
  • Exercice : Démontrer la divergence vers +infini d’une suite minorée par une suite divergeant vers +infini
  • Exercice : Démontrer la limite en +infini et en –infini de la fonction exponentielle
  • Problème : Etudier la convergence d'une suite à l'aide du théorème de comparaison et du raisonnement par récurrence
  • Problème : Etudier la convergence d'une suite à l'aide du théorème des gendarmes et du raisonnement par récurrence
  • Problème : Etudier la convergence d'une suite à l'aide du théorème de convergence monotone et du raisonnement par récurrence
  • Problème : Étudier un phénomène d’évolution modélisable par une suite
  • Problème : Rechercher un seuil d'une suite à l'aide d'un algorithme
  • Problème : Rechercher une valeur approchée d'un nombre mathématique particulier à l'aide d'un algorithme
  • Exercice type bac : Asie 2024, QCM de suites numériques
  • Exercice type bac : Polynésie 2024, Conjecture et étude du comportement d'une suite
  • Exercice type bac : Métropole septembre 2024, QCM de suites numériques
  • Méthode : Démontrer une propriété par récurrence
  • Méthode : Etudier la convergence d'une suite
  • Méthode : Lever une indétermination
  • Méthode : Etudier la monotonie d'une suite
  • Méthode : Montrer qu'une suite est arithmétique
  • Méthode : Montrer qu'une suite est géométrique
  • Méthode : Etudier une suite à l'aide d'une suite auxiliaire

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025