01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice : Connaître le théorème des gendarmes

Connaître le théorème des gendarmes Exercice

Vrai ou faux ? Le théorème des gendarmes permet de montrer qu'une suite diverge.

Vrai ou faux ? Pour appliquer le théorème des gendarmes, on doit pouvoir encadrer une suite par deux autres suites convergentes.

Soient trois suites (u_n), (v_n) et (w_n) et soit un réel l.

On cherche à montrer la convergence de la suite (v_n).

Quelles sont les conditions à réunir pour appliquer le théorème des gendarmes ?

Soient trois suites (u_n), (v_n) et (w_n) et soit un réel l tel que :

  • u_n \leq v_n \leq w_n à partir d'un rang n_0
  • \lim\limits_{n \to +\infty} u_n = \lim\limits_{n \to +\infty} w_n = l

 

Que peut-on dire de (v_n) ? (Plusieurs réponses possibles)

Voir aussi
  • Cours : Les suites
  • Quiz : Les suites
  • Exercice : Connaître les caractéristiques des limites infinies de suites
  • Exercice : Connaître les caractéristiques des limites finies de suites
  • Exercice : Connaître les caractéristiques d'une suite convergente
  • Exercice : Connaître les caractéristiques d'une suite divergente
  • Exercice : Conjecturer graphiquement si une suite est convergente ou divergente
  • Exercice : Conjecturer graphiquement la limite d'une suite
  • Exercice : Compléter les limites d'une somme de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'une somme de suites dont on connaît la limite
  • Exercice : Compléter les limites d'un produit de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'un produit de suites dont on connaît la limite
  • Exercice : Compléter les limites d'un quotient de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'un quotient de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'une opération de suites dont on connaît la limite
  • Exercice : Déterminer la limite d'une suite à l'aide du théorème des gendarmes
  • Exercice : Déterminer la convergence d'une suite géométrique
  • Exercice : Déterminer la convergence d'une combinaison linéaire de suites géométriques
  • Exercice : Connaître les étapes du raisonnement par récurrence
  • Exercice : Démontrer qu'une suite est majorée par récurrence
  • Exercice : Démontrer qu'une suite est minorée par récurrence
  • Exercice : Démontrer qu'une suite est bornée par récurrence
  • Exercice : Démontrer une égalité par récurrence
  • Exercice : Démontrer une inégalité par récurrence
  • Exercice : Démontrer que toute suite croissante non majorée tend vers +infini
  • Exercice : Démontrer par récurrence l’inégalité de Bernoulli
  • Exercice : Démontrer la limite d'une suite géométrique
  • Exercice : Démontrer la divergence vers +infini d’une suite minorée par une suite divergeant vers +infini
  • Exercice : Démontrer la limite en +infini et en –infini de la fonction exponentielle
  • Problème : Etudier la convergence d'une suite à l'aide du théorème de comparaison et du raisonnement par récurrence
  • Problème : Etudier la convergence d'une suite à l'aide du théorème des gendarmes et du raisonnement par récurrence
  • Problème : Etudier la convergence d'une suite à l'aide du théorème de convergence monotone et du raisonnement par récurrence
  • Problème : Étudier un phénomène d’évolution modélisable par une suite
  • Problème : Rechercher un seuil d'une suite à l'aide d'un algorithme
  • Problème : Rechercher une valeur approchée d'un nombre mathématique particulier à l'aide d'un algorithme
  • Exercice type bac : Asie 2024, QCM de suites numériques
  • Exercice type bac : Centres étrangers 2024, Etude d'une suite de fonctions exponentielles
  • Exercice type bac : Polynésie 2024, Conjecture et étude du comportement d'une suite
  • Exercice type bac : Métropole septembre 2024, QCM de suites numériques
  • Méthode : Démontrer une propriété par récurrence
  • Méthode : Etudier la convergence d'une suite
  • Méthode : Lever une indétermination
  • Méthode : Etudier la monotonie d'une suite
  • Méthode : Montrer qu'une suite est arithmétique
  • Méthode : Montrer qu'une suite est géométrique
  • Méthode : Etudier une suite à l'aide d'une suite auxiliaire

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20254  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025