01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Problème : Etudier l'orthogonalité de deux plans à l'aide d'un système d'équations linéaires

Etudier l'orthogonalité de deux plans à l'aide d'un système d'équations linéaires Problème

On considère le plan qui a pour représentation paramétrique : 
P \ : \left \{ \begin{array}{rcl} x= 2 +t -2t' \\ y=-1 +2t +t' \\ z= 3 +t -2t'  \end{array} \right. \: t et t' \in \mathbb{R}

Quels sont les deux vecteurs non colinéaires de P ?

Quelles sont les coordonnées d'un vecteur normal au plan P ?

Quelle est l'équation cartésienne du plan P ?

On considère le plan P' d'équation cartésienne :
2x+3y+2z+6=0  

Que peut-on dire de la position relative des plans P et P' ?

Voir aussi
  • Cours : Représentation paramétrique et équation cartésienne
  • Quiz : Représentation paramétrique et équation cartésienne
  • Exercice : Connaître les caractéristiques de la représentation paramétrique d'une droite
  • Exercice : Déterminer si un point appartient à une droite à l'aide de sa représentation paramétrique
  • Exercice : Déterminer un vecteur directeur d'une droite à l'aide de sa représentation paramétrique
  • Exercice : Reconnaître graphiquement une droite à l'aide de sa représentation paramétrique
  • Exercice : Déterminer la représentation paramétrique d'une droite à l'aide d'un vecteur directeur et d'un point
  • Exercice : Déterminer la représentation paramétrique d'une droite à l'aide de deux points
  • Exercice : Déterminer un vecteur normal à un plan à l'aide de son équation cartésienne
  • Exercice : Déterminer l'équation cartésienne d'un plan à l'aide d'un point et d'un vecteur normal
  • Exercice : Reconnaître graphiquement un plan à l'aide de son équation cartésienne
  • Exercice : Déterminer les coordonnées du projeté orthogonal d’un point sur un plan donné par une équation cartésienne
  • Exercice : Déterminer les coordonnées du projeté orthogonal d’un point sur une droite donnée par un point et un vecteur directeur
  • Problème : Déterminer si trois vecteurs forment une base à l'aide d'un système d'équations linéaires
  • Problème : Déterminer les coordonnées d’un vecteur dans une base à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'alignement de trois points à l'aide d'un système d'équations linéaires
  • Problème : Etudier la colinéarité de deux vecteurs à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme de deux plans à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection de deux plans à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'orthogonalité de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'orthogonalité d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Exercice : Démontrer la forme de l'équation cartésienne du plan normal au vecteur n et passant par le point A
  • Problème : Déterminer l’intersection de deux plans à l'aide de leur représentation paramétrique
  • Problème : Déterminer un vecteur orthogonal à deux vecteurs non colinéaires
  • Problème : Déterminer l'équation d’une sphère dont on connaît le centre et le rayon
  • Problème : Déterminer l'intersection d’une sphère et d’une droite
  • Exercice type bac : Amérique du Nord 2024, QCM de géométrie dans l'espace
  • Méthode : Déterminer une équation cartésienne de plan
  • Méthode : Déterminer une représentation paramétrique de droite dans l'espace
  • Méthode : Montrer qu'un point appartient à une droite
  • Méthode : Déterminer l'intersection de deux droites dans l'espace

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025