01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Méthode : Montrer qu'un vecteur est normal à un plan

Montrer qu'un vecteur est normal à un plan Méthode

Sommaire

1Rappeler la définition 2Déterminer deux vecteurs non colinéaires du plan 3Calculer les produits scalaires 4Conclure

Un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

On considère un plan trois points A, B et C non alignés tels que :

A\left(1;0;4\right), B\left(-3;3;8\right) et C\left(3;-1;-4\right)

Déterminer si le vecteur \overrightarrow{n}\begin{pmatrix} 10 \cr\cr 12 \cr\cr 1 \end{pmatrix} est normal au plan \left(ABC\right) .

Etape 1

Rappeler la définition

On rappelle qu'un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

Le vecteur \overrightarrow{n} est normal au plan \left(ABC\right) si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.

Etape 2

Déterminer deux vecteurs non colinéaires du plan

On détermine deux vecteurs \overrightarrow{u} et \overrightarrow{v} non colinéaires du plan P.

Les points A, B et C n'étant pas alignés, on peut utiliser les vecteurs \overrightarrow{AB} et \overrightarrow{AC}. On détermine leurs coordonnées :

  • \overrightarrow{AB}\begin{pmatrix} x_B-x_A \cr\cr y_B-y_A \cr\cr z_B-z_A \end{pmatrix} soit \overrightarrow{AB}\begin{pmatrix} -3-1\cr\cr 3-0\cr\cr 8-4\end{pmatrix} donc \overrightarrow{AB}\begin{pmatrix} -4\cr\cr 3\cr\cr 4\end{pmatrix}
  • \overrightarrow{AC}\begin{pmatrix} x_C-x_A \cr\cr y_C-y_A \cr\cr z_C-z_A \end{pmatrix} soit \overrightarrow{AC}\begin{pmatrix} 3-1\cr\cr -1-0\cr\cr -4-4\end{pmatrix} donc \overrightarrow{AC}\begin{pmatrix} 2\cr\cr -1\cr\cr -8\end{pmatrix}
Etape 3

Calculer les produits scalaires

On calcule les produits scalaires \overrightarrow{n}.\overrightarrow{u} et \overrightarrow{n}.\overrightarrow{v}.

On calcule les produits scalaires \overrightarrow{n}.\overrightarrow{AB} et \overrightarrow{n}.\overrightarrow{AC}. :

  • \overrightarrow{n}.\overrightarrow{AB} = 10 \times \left(-4\right) + 12 \times 3 + 1\times 4 = -40+36+4=0
  • \overrightarrow{n}.\overrightarrow{AC} = 10 \times 2 + 12 \times \left(-1\right) + 1\times \left(-8\right) = 20 -12-8=0
Etape 4

Conclure

Si on obtient \overrightarrow{n}.\overrightarrow{u} = 0 et \overrightarrow{n}.\overrightarrow{v} = 0, alors \overrightarrow{n} est un vecteur normal au plan.

On obtient :

  • \overrightarrow{n}.\overrightarrow{AB} = 0
  • \overrightarrow{n}.\overrightarrow{AC} = 0

Donc le vecteur \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires du plan \left(ABC\right). On en conclut que \overrightarrow{n} est un vecteur normal au plan.

Voir aussi
  • Cours : Le produit scalaire
  • Quiz : Le produit scalaire
  • Exercice : Connaître l'expression du produit scalaire en fonction des normes et du cosinus
  • Exercice : Calculer un produit scalaire grâce au cosinus
  • Exercice : Identifier le projeté orthogonal d'un point sur une droite dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un vecteur sur une droite dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un point sur un plan dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un vecteur sur un plan dans l'espace
  • Exercice : Connaître l'expression du produit scalaire en fonction des normes des projetés orthogonaux
  • Exercice : Calculer un produit scalaire à l'aide de projetés orthogonaux dans l'espace
  • Exercice : Connaître les identités remarquables avec le produit scalaire
  • Exercice : Calculer un produit scalaire à l'aide de ses identités remarquables dans l'espace
  • Exercice : Connaître la bilinéarité du produit scalaire
  • Exercice : Utiliser la décomposition d'un vecteur pour calculer un produit scalaire
  • Exercice : Calculer un produit scalaire sans coordonnées de vecteurs
  • Exercice : Connaître l'expression du produit scalaire en fonction des coordonnées des vecteurs dans l'espace
  • Exercice : Calculer un produit scalaire à l'aide des coordonnées des vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité de deux vecteurs sans coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité de deux vecteurs à l'aide de coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité d'un plan et d'une droite sans coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité d'un plan et d'une droite à l'aide de coordonnées de vecteurs dans l'espace
  • Exercice : Calculer une norme à l'aide du produit scalaire et du cosinus
  • Exercice : Calculer une norme à l'aide des identités remarquables du produit scalaire
  • Exercice : Calculer une norme à l'aide de la relation de Chasles
  • Exercice : Calculer une norme sans coordonnées de vecteurs
  • Exercice : Calculer une norme à l'aide des coordonnées des vecteurs dans l'espace
  • Exercice : Déterminer si une base est une base orthonormée
  • Exercice : Déterminer un repère orthonormé adapté
  • Exercice : Calculer une longueur dans l'espace sans coordonnées de vecteurs
  • Exercice : Calculer une longueur dans l'espace à l'aide des coordonnées des vecteurs
  • Exercice : Calculer un angle dans l'espace à l'aide du produit scalaire et des normes
  • Exercice : Déterminer si un vecteur est normal à un plan à l'aide de ses vecteurs directeurs
  • Exercice : Déterminer un vecteur normal d'un plan à l'aide du produit scalaire et de ses vecteurs directeurs
  • Exercice : Déterminer le plan passant par un point et normal à un vecteur donné
  • Problème : Résoudre un problème de géométrie dans l'espace à l'aide du produit scalaire
  • Exercice : Déterminer la distance entre un point et une droite à l'aide du projeté orthogonal et du produit scalaire dans l'espace
  • Exercice : Déterminer la distance entre un point et un plan à l'aide du projeté orthogonal et du produit scalaire dans l'espace
  • Problème : Étudier l'orthogonalité de deux droites dans l'espace
  • Problème : Étudier l'orthogonalité d'une droite et d'un plan dans l'espace
  • Problème : Étudier le plan médiateur de deux points
  • Exercice : Démontrer que le projeté orthogonal d’un point M sur un plan P est le point de P le plus proche de M
  • Problème : Etudier l'intersection d’une sphère et d’un plan, plan tangent à une sphère en un point

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025