01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Méthode : Lire graphiquement images et antécédents sur la courbe représentative d'une fonction

Lire graphiquement images et antécédents sur la courbe représentative d'une fonction Méthode

Sommaire

Méthode 1Déterminer graphiquement l'image d'un réel par f 1Tracer la droite d'équation x=a 2Lire l'image de a par fMéthode 2Déterminer graphiquement les antécédents d'un réel par f 1Tracer la droite d'équation y=a 2Déterminer les abscisses des points d'intersection avec la courbe
Méthode 1

Déterminer graphiquement l'image d'un réel par f

Il y a deux possibilités pour déterminer l'image d'un réel par une fonction : par le calcul ou graphiquement. Afin de déterminer graphiquement l'image d'un réel par une fonction f, on utilise C_f, sa courbe représentative dans un repère.

On considère une fonction f dont on donne la courbe représentative ci-dessous :

-

Déterminer l'image de 2 par f.

Etape 1

Tracer la droite d'équation x=a

On trace la droite verticale d'équation x = a.

On trace la droite (verticale) d'équation x=2.

-
Etape 2

Lire l'image de a par f

On cherche ensuite, si elle existe, l'ordonnée du point d'intersection de C_f et de la droite x=a.

Cette ordonnée vaut f\left(a \right), image de a par f.

On détermine l'ordonnée du point d'intersection de la droite x =2 et de C_f.

-

Le point de C_f d'abscisse 2 a pour ordonnée -1. Donc f\left(2\right) = -1.

On en conclut que l'image de 2 par f est -1.

Méthode 2

Déterminer graphiquement les antécédents d'un réel par f

Il y a deux possibilités pour déterminer l'antécédent d'un réel par une fonction : par le calcul ou graphiquement. Afin de déterminer graphiquement les antécédents d'un réel par une fonction f, on utilise C_f, sa courbe représentative.

On considère une fonction f dont on donne la courbe représentative ci-dessous :

-

Déterminer graphiquement les éventuels antécédents de 4 par f.

Etape 1

Tracer la droite d'équation y=a

On trace la droite horizontale d'équation y = a.

On trace la droite d'équation y=4.

-
Etape 2

Déterminer les abscisses des points d'intersection avec la courbe

On cherche ensuite, si elles existent, les abscisses des points d'intersection de C_f et de la droite d'équation y=a. Ces abscisses sont les antécédents de a par f.

On détermine les abscisses des points d'intersection de la droite d'équation y=4 et de C_f.

-

On en conclut que les antécédents de 4 par f sont 2 et -2.

Voir aussi
  • Cours : Se constituer un répertoire de fonctions de référence
  • Méthode : Utiliser une fonction de référence pour comparer deux nombres
  • Exercice : Connaître les caractéristiques d'une fonction affine
  • Exercice : Déterminer si une fonction est une fonction affine à l'aide de son expression
  • Exercice : Déterminer le coefficient directeur d'une fonction affine à l'aide de son expression
  • Exercice : Déterminer l'ordonnée à l'origine d'une fonction affine à l'aide de son expression
  • Exercice : Lire le coefficient directeur d'une fonction affine sur sa courbe représentative
  • Exercice : Déterminer graphiquement l'ordonnée à l'origine de la courbe représentative d'une fonction affine
  • Exercice : Associer expression et courbe représentative d'une fonction affine
  • Exercice : Déterminer la monotonie d'une fonction affine à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction affine
  • Exercice : Connaître les caractéristiques d'une fonction carré
  • Exercice : Déterminer si une fonction est une fonction carré à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction carré
  • Exercice : Déterminer les variations d'une fonction carré à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction carré
  • Exercice : Calculer une valeur à l'aide de la parité de la fonction carré
  • Exercice : Appliquer la fonction carré sur une inéquation
  • Exercice : Résoudre une inéquation du type x2<a ou x2>a
  • Exercice : Connaître les caractéristiques d'une fonction racine carrée
  • Exercice : Déterminer si une fonction est une fonction racine carrée à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction racine carrée
  • Exercice : Associer expression et courbe représentative d'une fonction racine carrée
  • Exercice : Déterminer les variations d'une fonction racine carrée à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction racine carrée
  • Exercice : Appliquer la fonction racine carrée à une inégalité
  • Problème : Explorer la relation entre la fonction carré et la fonction racine carrée
  • Exercice : Connaître les caractéristiques d'une fonction cube
  • Exercice : Déterminer si une fonction est une fonction cube à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction cube
  • Exercice : Déterminer les variations d'une fonction cube à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction cube
  • Exercice : Calculer une valeur à l'aide de l'imparité de la fonction cube
  • Exercice : Appliquer la fonction cube sur une inéquation
  • Exercice : Utiliser la comparaison entre x, x^2 et x^3 dans une inéquation
  • Problème : Étudier la position relative des courbes d’équation y=x, y=x^2, y=x^3 pour x>=0
  • Exercice : Connaître les caractéristiques d'une fonction inverse
  • Exercice : Déterminer si une fonction est une fonction inverse à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction inverse
  • Exercice : Associer expression et courbe représentative d'une fonction inverse
  • Exercice : Déterminer les variations d'une fonction inverse à l'aide de son expression
  • Méthode : Calculer l'image d'un réel par une fonction
  • Exercice : Associer expression et tableau de variation d'une fonction inverse
  • Méthode : Déterminer graphiquement le domaine de définition d'une fonction
  • Exercice : Appliquer la fonction inverse à une inégalité
  • Exercice : Résoudre une inéquation du type 1/x<a
  • Quiz : Se constituer un répertoire de fonctions de référence
  • Méthode : Déterminer les antécédents d'un nombre par une fonction par le calcul
  • Méthode : Tracer la courbe représentative d'une fonction
  • Méthode : Déterminer l'appartenance d'un point à une courbe
  • Méthode : Rechercher algébriquement le domaine de définition d'une fonction
  • Méthode : Construire le tableau de variations d'une fonction
  • Méthode : Déterminer l'expression d'une fonction affine
  • Méthode : Tracer la représentation graphique d'une fonction affine
  • Méthode : Donner le sens de variation d'une fonction affine
  • Méthode : Donner le sens de variation et l'extremum d'une fonction trinôme du second degré
  • Méthode : Représenter une fonction polynôme du second degré
  • Méthode : Décomposer une fonction en un enchaînement de fonctions usuelles

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025